Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Extending Universal Nodal Excitations Optimizes Superconductivity in Bi2Sr2CaCu2O8+δ

Identifieur interne : 005462 ( Main/Repository ); précédent : 005461; suivant : 005463

Extending Universal Nodal Excitations Optimizes Superconductivity in Bi2Sr2CaCu2O8+δ

Auteurs : RBID : Pascal:09-0367420

Descripteurs français

English descriptors

Abstract

Understanding the mechanism by which d wave superconductivity in the cuprates emerges and is optimized by doping the Mott insulator is one of the major outstanding problems in condensed-matter physics. Our high-resolution scanning tunneling microscopy measurements of the high-transition temperature (Tc) superconductor Bi2Sr2CaCu2O8+δ show that samples with different Tc values in the low doping regime follow a remarkably universal d wave low-energy excitation spectrum, indicating a doping-independent nodal gap. We demonstrate that Tc instead correlates with the fraction of the Fermi surface over which the samples exhibit the universal spectrum. Optimal Tc is achieved when all parts of the Fermi surface follow this universal behavior. Increasing the temperature above Tc turns the universal spectrum into an arc of gapless excitations, whereas overdoping breaks down the universal nodal behavior.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:09-0367420

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Extending Universal Nodal Excitations Optimizes Superconductivity in Bi
<sub>2</sub>
Sr
<sub>2</sub>
CaCu
<sub>2</sub>
O
<sub>8+δ</sub>
</title>
<author>
<name sortKey="Pushp, Aakash" uniqKey="Pushp A">Aakash Pushp</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Joseph Henry Laboratories and Department of Physics, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, University of Illinois at Urbana-Champaign</s1>
<s2>Urbana, IL 61801</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Urbana, IL 61801</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Parker, Colin V" uniqKey="Parker C">Colin V. Parker</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Joseph Henry Laboratories and Department of Physics, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Pasupathy, Abhay N" uniqKey="Pasupathy A">Abhay N. Pasupathy</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Joseph Henry Laboratories and Department of Physics, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Gomes, Kenjiro K" uniqKey="Gomes K">Kenjiro K. Gomes</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Joseph Henry Laboratories and Department of Physics, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ono, Shimpei" uniqKey="Ono S">Shimpei Ono</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Central Research Institute of Electric Power Industry</s1>
<s2>Komae, Tokyo 201-8511</s2>
<s3>JPN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Central Research Institute of Electric Power Industry</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JINSHENG WEN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Condensed Matter Physics and Materials Science, Brookhaven National Laboratory (BNL)</s1>
<s2>Upton, NY 11973</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Upton, NY 11973</wicri:noRegion>
</affiliation>
</author>
<author>
<name>ZHIJUN XU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Condensed Matter Physics and Materials Science, Brookhaven National Laboratory (BNL)</s1>
<s2>Upton, NY 11973</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Upton, NY 11973</wicri:noRegion>
</affiliation>
</author>
<author>
<name>GENDA GU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Condensed Matter Physics and Materials Science, Brookhaven National Laboratory (BNL)</s1>
<s2>Upton, NY 11973</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Upton, NY 11973</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yazdani, Ali" uniqKey="Yazdani A">Ali Yazdani</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Joseph Henry Laboratories and Department of Physics, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">09-0367420</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 09-0367420 INIST</idno>
<idno type="RBID">Pascal:09-0367420</idno>
<idno type="wicri:Area/Main/Corpus">005111</idno>
<idno type="wicri:Area/Main/Repository">005462</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0036-8075</idno>
<title level="j" type="abbreviated">Science : (Wash. D.C.)</title>
<title level="j" type="main">Science : (Washington, D.C.)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bismuth Calcium Copper Strontium Oxides Mixed</term>
<term>Cuprates</term>
<term>Doping</term>
<term>Energy spectra</term>
<term>Excitation spectrum</term>
<term>Gallium phosphide</term>
<term>High-Tc superconductors</term>
<term>Indium additions</term>
<term>Mott insulating</term>
<term>Scanning tunneling microscopy</term>
<term>Solid state physics</term>
<term>Superconducting transition temperature</term>
<term>Superconducting transitions</term>
<term>Superconductivity</term>
<term>Temperature dependence</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Supraconductivité</term>
<term>Cuprate</term>
<term>Dopage</term>
<term>Isolant Mott</term>
<term>Physique état solide</term>
<term>Microscopie tunnel balayage</term>
<term>Addition indium</term>
<term>Spectre énergie</term>
<term>Spectre excitation</term>
<term>Phosphure de gallium</term>
<term>Dépendance température</term>
<term>Transition supraconductrice</term>
<term>Température transition supraconductrice</term>
<term>Supraconducteur haute température</term>
<term>Bismuth Calcium Cuivre Strontium Oxyde Mixte</term>
<term>GaP</term>
<term>Bi2Sr2CaCu2O8+δ</term>
<term>7472H</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Understanding the mechanism by which d wave superconductivity in the cuprates emerges and is optimized by doping the Mott insulator is one of the major outstanding problems in condensed-matter physics. Our high-resolution scanning tunneling microscopy measurements of the high-transition temperature (T
<sub>c</sub>
) superconductor Bi
<sub>2</sub>
Sr
<sub>2</sub>
CaCu
<sub>2</sub>
O
<sub>8+δ</sub>
show that samples with different T
<sub>c</sub>
values in the low doping regime follow a remarkably universal d wave low-energy excitation spectrum, indicating a doping-independent nodal gap. We demonstrate that T
<sub>c</sub>
instead correlates with the fraction of the Fermi surface over which the samples exhibit the universal spectrum. Optimal T
<sub>c</sub>
is achieved when all parts of the Fermi surface follow this universal behavior. Increasing the temperature above T
<sub>c</sub>
turns the universal spectrum into an arc of gapless excitations, whereas overdoping breaks down the universal nodal behavior.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0036-8075</s0>
</fA01>
<fA02 i1="01">
<s0>SCIEAS</s0>
</fA02>
<fA03 i2="1">
<s0>Science : (Wash. D.C.)</s0>
</fA03>
<fA05>
<s2>324</s2>
</fA05>
<fA06>
<s2>5935</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Extending Universal Nodal Excitations Optimizes Superconductivity in Bi
<sub>2</sub>
Sr
<sub>2</sub>
CaCu
<sub>2</sub>
O
<sub>8+δ</sub>
</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PUSHP (Aakash)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PARKER (Colin V.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PASUPATHY (Abhay N.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GOMES (Kenjiro K.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ONO (Shimpei)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>JINSHENG WEN</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ZHIJUN XU</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>GENDA GU</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>YAZDANI (Ali)</s1>
</fA11>
<fA14 i1="01">
<s1>Joseph Henry Laboratories and Department of Physics, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, University of Illinois at Urbana-Champaign</s1>
<s2>Urbana, IL 61801</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Central Research Institute of Electric Power Industry</s1>
<s2>Komae, Tokyo 201-8511</s2>
<s3>JPN</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Condensed Matter Physics and Materials Science, Brookhaven National Laboratory (BNL)</s1>
<s2>Upton, NY 11973</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>1689-1693</s1>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>6040</s2>
<s5>354000187474780190</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>09-0367420</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Science : (Washington, D.C.)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fA99>
<s0>1/4 p. ref. et notes</s0>
</fA99>
<fC01 i1="01" l="ENG">
<s0>Understanding the mechanism by which d wave superconductivity in the cuprates emerges and is optimized by doping the Mott insulator is one of the major outstanding problems in condensed-matter physics. Our high-resolution scanning tunneling microscopy measurements of the high-transition temperature (T
<sub>c</sub>
) superconductor Bi
<sub>2</sub>
Sr
<sub>2</sub>
CaCu
<sub>2</sub>
O
<sub>8+δ</sub>
show that samples with different T
<sub>c</sub>
values in the low doping regime follow a remarkably universal d wave low-energy excitation spectrum, indicating a doping-independent nodal gap. We demonstrate that T
<sub>c</sub>
instead correlates with the fraction of the Fermi surface over which the samples exhibit the universal spectrum. Optimal T
<sub>c</sub>
is achieved when all parts of the Fermi surface follow this universal behavior. Increasing the temperature above T
<sub>c</sub>
turns the universal spectrum into an arc of gapless excitations, whereas overdoping breaks down the universal nodal behavior.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70D72H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Supraconductivité</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Superconductivity</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Cuprate</s0>
<s2>NA</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Cuprates</s0>
<s2>NA</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Doping</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Doping</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Isolant Mott</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Mott insulating</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Physique état solide</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Solid state physics</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Microscopie tunnel balayage</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Scanning tunneling microscopy</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Spectre énergie</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Energy spectra</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Spectre excitation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Excitation spectrum</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Espectro excitación</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Phosphure de gallium</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Gallium phosphide</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Galio fosfuro</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Transition supraconductrice</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Superconducting transitions</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Température transition supraconductrice</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Superconducting transition temperature</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Supraconducteur haute température</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>High-Tc superconductors</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Bismuth Calcium Cuivre Strontium Oxyde Mixte</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Bismuth Calcium Copper Strontium Oxides Mixed</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Mixto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>GaP</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Bi2Sr2CaCu2O8+δ</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>7472H</s0>
<s4>INC</s4>
<s5>65</s5>
</fC03>
<fN21>
<s1>264</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005462 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 005462 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:09-0367420
   |texte=   Extending Universal Nodal Excitations Optimizes Superconductivity in Bi2Sr2CaCu2O8+δ
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024